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Abstract. In this paper, we present AcausalNets.jl - a library sup-
porting inference in a quantum generalization of Bayesian networks and
their application to quantum games. The proposed solution is based on
modern approach to numerical computing provided by Julia language.
The library provides a high-level functions for Bayesian inference that
can be applied to both classical and quantum Bayesian networks.
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1 Introduction

Bayesian networks [10] are probabilistic models which, among their numerous
use cases, allow to model complex systems of interconnected random events in
games of chance and their influence on each other. There are several approaches
to generalizing Bayesian probability theory into the quantum realm [7,8,10].

Introducing quantum probability into game theory opens up new opportuni-
ties for finding optimal strategies in various games of chance. Apart from well
known work on representing quantum strategies as unitary gates [9] or apply-
ing quantum entanglement to find optimal strategies [2], there is also relatively
new approach to apply quantum Bayesian networks for that purpose [5]. This
new approach has not yet been fully explored, therefore we focus on methods,
algorithms and numerical support for researchers working this topic.

Proper numerical tools are required due to high complexity of computations
essential to perform such experiments. In particular, performing Bayesian infer-
ence in Acausal networks, a quantum generalization of Bayesian networks, is not
yet fully supported among numerical libraries.

In this paper we present AcausalNets.jl - a library providing a high-level
functions for Bayesian inference that can be applied to both classical and quan-
tum Bayesian networks. The library takes advantage of the new approach to
numerical computing offered by Julia language [1].
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Organization of the Paper. The paper is organized as follows: in Sect. 2
we summarize relevant related work which provided basis and inspiration for
this paper. In Sect. 3 we describe Bayesian networks and their usage in higher
detail. We also briefly delve into the inference algorithms implemented in
AcausalNets.jl. In Sect. 4 we provide in brief detail the principles we followed
when implementing the library. Section 5 sums up our results when recreating
and expanding experiments first conducted and described in [5]. In Sect. 6 we
provide a brief overview of our ideas for further improvements and enhancements
of AcausalNets.jl.

2 Related Work

Belief Propagation algorithms that we adapt for quantum Bayes networks in
AcausalNets.jl library are covered to a fuller extent in [4] and [10]. The adap-
tation was done using theoretical foundations for generalizing Bayesian proba-
bility theory into the quantum realm described in [7,8]. To our best knowledge,
there is no numerical support for quantum version of that algorithm.

Additionally, our work was inspired by BayesNets.jl1 - a Julia library
designed for high-level operations on classical Bayesian Networks.

In general, there is a huge variety of software related to quantum infor-
mation implemented in numerous programming languages, most notably
QuantumInformation.jl [3] implemented in Julia. The set of functionalities
these libraries provide, while wide, is focused mainly on low-level optimized
matrix operations. AcausalNets.jl makes use of matrix operations imple-
mented in QuantumInformation.jl in its implementation of Belief Propagation
algorithms.

3 Classical and Quantum Bayesian Networks

Bayesian Networks are probabilistic graphical models used for describing systems
of random variables and correlations between their probability distributions.
Those networks take a form of a directed acyclic graph, where vertices denote
the variables and edges - correlations between them. Bayesian network is usu-
ally represented using set of multivariate distributions, which accounts for both
variables distributions and their correlations. Typical applications of Bayesian
networks include: calculating probability of a given variable values configuration
or inferring probability distributions of given variables based on known states of
other variables in the network. The variable connection types differ depending
on their relation is classical or quantum.

Classical Version - Conditional Dependence. In classical version, as in
Fig. 1, the variables in a Bayesian Network may be causally dependent on one
other, which means their distributions are conditional. If distribution of variable

1 https://github.com/sisl/BayesNets.jl.

https://github.com/sisl/BayesNets.jl
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V2 is conditionally dependent on the distribution of variable V1, a happens-before
relationship between V1 and V2 is implied.

Quantum Version - Acausal Relationships. When generalized to the quan-
tum domain, Bayesian networks can also describe acausal relationships between
variables, which may be interpreted as a quantum entanglement between them.
As opposed to a causal relationship, such a system of variables is not described
as one system at two times, but rather as two systems in a single time frame.
An example of such a network is shown in Fig. 2.

C

BA

Fig. 1. A Bayesian network where there
is a dependency of C on A and B
(arrows). Source: [5]

C

BA

Fig. 2. States of systems A and B are
entangled (zigzag line), and there is
classic dependence of C on A and B
(arrows). Source: [5]

Inference Algorithms. Inference in Bayesian networks - calculating the prob-
ability distribution of a subsystem of variables based on already known variables
- is an NP-hard problem [6]. However, there are algorithms which successfully
approximate such computations with considerably lower computational complex-
ity. AcausalNets.jl provides implementations of two algorithms for performing
inference in Bayesian networks: a non-optimal naive algorithm, as well as the
Belief Propagation algorithm [4,10]. Moreover, the second algorithm has been
generalized to the quantum domain based on [7].

4 Design of the Library

AcausalNets.jl API has been designed with simplicity of computations regard-
ing discrete quantum probability systems in mind. It allows the user to perform
inference in Bayesian Networks described in Sect. 3.

Defining Bayesian Networks. To define a Bayesian network, one must first
define systems of random variables which make up the network. Then a graph is
built of those variables by inserting them in topological order. This requirement
is essential, since Bayesian network is a directed acyclic graph. An example of
the code which defines a network is shown in Fig. 3.

Performing Inference. Inference can be performed with or without evidence -
the known state of some of the random variables in the network. Known states are
represented by a system with appropriate variables and their known distribution.
Next, function infer(network, variables, evidence, strategy) is used for conduct-
ing inference for variables and evidence passed as arguments. By default, naive
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Fig. 3. Using AcasualNets.jl API to build a bayesian network analogous to Fig. 1

Fig. 4. Using AcasualNets.jl API to perform Bayesian inference.

inference algorithm is used, but it can be changed in library’s Inference module.
The example code for Monty Hall game use case [5] is shown in the Fig. 4.

Usage of the Julia Language. The software benefits strongly from Julia type-
system [1], which allows to implement general operation on Bayesian Networks
based on the type of the distributions the network is dealing with. It is possible
because of Julia’s type parametrization properties. More specifically, as shown
in the Fig. 5, BayesNet type is parametrized with the type of DiscreteSystem,
which specifies the math operations to be perform on probability distributions
of the variables. For example, in case of DiscreteQuantumSystem such opera-
tions are performed in accordance with definitions of quantum conditional oper-
ators [8].

AcausalNets.jl has been implemented in version 1.0 of Julia language [1].
Source code is publicly available on2. The repository also contains more example
use cases3 in a convenient form of interactive Jupyter Notebooks4.

2 https://github.com/mikegpl/AcausalNets.jl.
3 https://github.com/mikegpl/AcausalNets.jl/tree/master/notebooks.
4 https://jupyter.org.

https://github.com/mikegpl/AcausalNets.jl
https://github.com/mikegpl/AcausalNets.jl/tree/master/notebooks
https://jupyter.org
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Fig. 5. The structure of AcausalNets.jl modules and types.

5 Monty Hall Game Example Use Case

As a use case we use results of quantum Monty Hall game from [5] modeled as
Bayesian network shown in Fig. 2. We consider a case where there occur quantum
effects between the event A - the placement of the prize and B - the initial
choice of the player. We choose two example quantum probability distributions.
Equation (1) models the situation where A and B are entangled in the way that
due to quantum effects the placement of the prize always turns out to be the
same as the initial choice of the player.

ρAB same =
1
3
(|00〉 + |11〉 + |22〉)(〈00| + 〈11| + 〈22|) (1)

Equation (2) models the situation where A and B are entangled in the way that
due to quantum effects placement of the prize always turns out to be different
that the initial choice of the player.

ρAB diff =
1
6
(|01〉 + |10〉)(〈01| + 〈10|)

+
1
6
(|02〉 + |20〉)(〈02| + 〈20|) +

1
6
(|12〉 + |21〉)(〈12| + 〈21|)

(2)

Next, we construct linear combination of these two situations for λ ∈ (0, 1):

ρAB = λρAB same + (1 − λ)ρAB diff (3)
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We aim to find how the probability of the player wining the game by staying
with his initial choice depends on λ. We construct the Bayesian network as on
Fig. 2 with an appropriate ρAB and perform inference to obtain the probabilities.
We show our results in Fig. 6.We find that for λ = 0.6, the game is fair.

Fig. 6. Probability of winning the prize, when player does not change the door for the
initial state given by ρAB = λρAB same + (1 − λ)ρAB diff

The above results show that using high level API of AcausalNets.jl library
gives the same results as direct calculations presented in [5].

6 Conclusions and Future Work

High-level tools enable researchers to better organize, perform and docu-
ment their experiments, although sometimes for the price of their flexibility.
AcausalNets.jl has been created with aim to abstract out tedious calcula-
tions, provide a high-level API for quantum Bayesian inference and leverage
the numerical potential of Julia language. We have successfully used our library
to reproduce the results of experiments on the quantum version of Monty Hall
originally presented in [5]. Moreover, through automating a lot of necessary
computations, AcausalNets.jl helps experiment with more complex Bayesian
networks. In the future we plan to fully implement the quantum version of Belief
Propagation algorithm and test its efficiency on bigger networks. This may lead
to interesting new research results in quantum information as well as machine
learning in the future.
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