Submit a paper!

The Computer Science Journal (https://journals.agh.edu.pl/csci/) is published by the AGH University of Science and Technology, Krakow, Poland. The Editors of the Journal are members of the Faculty of Computer Science, Electronics and Telecommunications and the Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering. The Editorial Board consists of many renowned researchers from all over the world.

Original papers on theoretical and applied computer science problems are published. Example areas of interest are: theoretical aspects of computer science, pattern recognition and processing, evolutionary algorithms, neural networks, multi-agent systems, computer networks management, distributed, grid and cloud computing.

Our journal is indexed by: Google Scholar, CrossRef metadata search, Directory of Open Access Journals, Open Archives Initiative, Digital Libraries Federation, BazTech, Index Copernicus, Ulrich's Periodicals Directory, EBSCOhost Applied Sciences, DBLP, ERIH PLUS and SCOPUS and Emerging Sources Citation Index - part of Clarivate Web of Science.

Hot News

30.9.2019: Habilitations of Our Colleagues

Our Colleagues: Dr hab. inż. Bartosz Baliś and Dr hab. inż. Paweł Topa have passed habilitation procedure. Congratulations !

2-XII-2019: Sukces naszych magistrantów w XXXVI...

Prace magisterskie: Reconstruction of Complex Flow Networks Based on Analysis of Biological Structures. Autor mgr inż. Maciej Rapacz,...

16.05.2019: Dr. Marian Bubak and his Team have...

Great success!  Dr. Marian Bubak and his Team as leaders of the SANO Consortium have obtained grant in TEAMING contest as one of 13 projects funding...

Home

2019

  1. P. Skowron, P. Faliszewski, A. Slinko, Axiomatic Characterization of Committee Scoring Rules, Journal of Economic Theory, Vol. 180, pp. 244--273, 2019.
  2. P. Faliszewski, P. Skowron, A. Slinko, N. Talmon, Committee Scoring Rules: Axiomatic Characterization and Hierarchy, ACM Transactions on Economics and Computation, Vol. 7(1), Article 3, 2019.
  3. K. Wiatr, J. Kitowski and M. Bubak (eds.), Twelfth ACC Cyfronet AGH HPC users' conference , Zakopane, March 6-8, 2019, Prodeedings, Academic Computer Centre Cyfronet AGH, 2019.
  4. M. Orzechowski, B. Baliś, M. Ćwiertnia, Ł. Dutka, R. G. Słota and J. Kitowski, Scientific computing with application containers: onedata and hyperflow use cases, Twelfth ACC Cyfronet AGH HPC users' conference , Zakopane, March 6-8, 2019, Prodeedings, Academic Computer Centre Cyfronet AGH, 2019, pp. 51-52.
  5. Antchev, G., Aspell, P., Atanassov, I., Malawski, M., et al. Eur. Phys. J. C (2019) 79: 103. https://doi.org/10.1140/epjc/s10052-019-6567-0
  6. A. Kaczmarczyk, P. Faliszewski, Algorithms for Destructive Shift Bribery, Autonomous Agents and Multiagent Systems, Vol. 33(3), pp. 275--297, 2019
  7. M. Brill, P. Faliszewski, F. Sommer, N. Talmon, Approximation Algorithms for BalancedCC Multiwinner Rules, Proceedings of the 18th Conference on Autonomous Agents and Multiagent Systems (AAMAS-2019), pp. 494-502, May 2019
  8. P. Faliszewski, P. Skowron, S. Szufa, N. Talmon, Proportional Representation in Elections: STV vs PAV, Proceedings of the 18th Conference on Autonomous Agents and Multiagent Systems (AAMAS-2019), pp. 1946-1948, May 2019
  9. Wrzeszcz M., Opioła Ł., Kryza B., Dutka Ł., Słota R.G., Kitowski J. (2019) Harmonizing Sequential and Random Access to Datasets in Organizationally Distributed Environments. In: Rodrigues J. et al. (eds) Computational Science – ICCS 2019. ICCS 2019. Lecture Notes in Computer Science, vol 11536. Springer, Cham, pp 295-308
  10. Ł. Rauch, K. Bzowski, R. Kuziak, P. Uranga, I. Gutierrez, N. Isasti, R. Jacolot, J. Kitowski, M. Pietrzyk, Computer-Integrated Platform for Automatic, Flexible, and Optimal Multivariable Design of a Hot Strip Rolling Technology Using Advanced Multiphase Steels, Metals, 9(7), 737 (2019) 1-24 doi:10.3390/met9070737
  11. Wrzeszcz M., Opioła Ł., Kryza B., Dutka Ł., Słota R.G., Kitowski J. (2019) Harmonizing Sequential and Random Access to Datasets in Organizationally Distributed Environments. In: Rodrigues J. et al. (eds) Computational Science – ICCS 2019. ICCS 2019. Lecture Notes in Computer Science, vol 11536. Springer, Cham, https://doi.org/10.1007/978-3-030-22734-0_22
  12. Przewięźlikowski M., Grabowski M., Kurzyk D., Rycerz K. (2019) Support for High-Level Quantum Bayesian Inference. In: Rodrigues J. et al. (eds) Computational Science – ICCS 2019. ICCS 2019. Lecture Notes in Computer Science, vol 11540. Springer, Cham DOI https://doi.org/10.1007/978-3-030-22750-0_76
  13. Krok M., Rycerz K., Bubak M. (2019) Application of Continuous Time Quantum Walks to Image Segmentation. In: Rodrigues J. et al. (eds) Computational Science – ICCS 2019. ICCS 2019. Lecture Notes in Computer Science, vol 11537. Springer, Cham DOI https://doi.org/10.1007/978-3-030-22741-8_2
  14. P. Faliszewski, P. Manurangsi, K. Sornat, Approximation and Hardness of Shift-Bribery, Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI-2019), pp. 1901-1908, Jan.-Feb 2019.
  15. P. Faliszewski, P. Skowron, A. Slinko, S. Szufa, N. Talmon, How Similar Are Two Elections?, Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI-2019), pp. 1909-1916, Jan.-Feb. 2019.
  16. N. Talmon, P. Faliszewski, A Framework for Approval-Based Budgeting Methods, Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI-2019), pp. 2181-2188, Jan.-Feb. 2019.
  17. R. Bredereck, P. Faliszewski, A. Kaczmarczyk, R. Niedermeier, An Experimental View on Committees Providing Justified Representation, Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI-2019), pp. 109-115, August 2019.
  18. M. Kocot, A. Kolonko, E. Elkind, P. Faliszewski, N. Talmon, Multigoal Committee Selection, Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI-2019), pp. 385-391, August 2019.
  19. K. Magiera, P. Faliszewski, Recognizing Top-Monotonic Preference Profiles in Polynomial Time, Journal of Artificial Intelligence Research, Vol. 66, pp. 57-84, 2019.
  20. V. Avati, M. Blaszkiewicz, E. Bocchi, L. Canali, D. Castr, J. Cervantes, L. Grzanka, E. Guiraud, J. Kaspar, P. Kothuri, M. Lamanna, M. Malawski, A. Mnich, J. Moscicki, S. Murali, D. Piparo, E. Tejedor, Declarative Big Data Analysis for High-Energy Physics: TOTEM Use Case. In: Yahyapour R. (eds) Euro-Par 2019: Parallel Processing. Euro-Par 2019. Lecture Notes in Computer Science, vol 11725. Springer, Cham, pp. 241-255
  21. Antchev, G., Aspell, P., Atanassov, I., M. Malawski, et al. First measurement of elastic, inelastic and total cross-section at √s=13 TeV by TOTEM and overview of cross-section data at LHC energiesEur. Phys. J. C (2019) 79: 103. https://doi.org/10.1140/epjc/s10052-019-6567-0
  22. M. Malawski, et al., Search for a Light Charged Higgs Boson Decaying to a W Boson and a CP-Odd Higgs Boson in Final States with eμμ or μμμ in Proton-Proton Collisions at ffiffi √s p = 13 TeV, Phys Rev Lett. 2019 Sep 27;123(13), pp. 131802. doi: 10.1103/PhysRevLett.123.131802.
  23. M. Malawski, et al., Search for the production of W^±W^±W^∓ events at √s=13 TeV. Physical Review D. 100., 2019
  24. V.AvatiL.Grzanka, M.Malawski, et al., Search for long-lived particles using nonprompt jets and missing transverse momentum with proton-proton collisions at √s=13 TeV, Phys.Lett. B797 (2019) pp. 134876
  25. V.Avati, L.Grzanka, M.Malawski, et al., Search for Higgs and Z boson decays to J/ψ or Y pairs in the four-muon final state in proton-proton collisions at √s=13 TeV, Phys. Lett. B 797 (2019) pp. 134811
  26. G. Gawron, P. Faliszewski, Robustness of Approval-Based Multiwinner Voting Rules. Proceedings of the 6th International Conference on Algorithmic Decision Theory (ADT-2019), pp. 17-31, Oct. 2019.
  27. P. Faliszewski, Social Choice 2.0 and Customized Multiwinner Voting, in The Future of Economic Design, pp. 75--81, Nov. 2019.
  28. M. Łoś, A. Kłusek, M. A. Hassaan, K. Pingali, W. Dzwinel, M. Paszyński, Parallel fast isogeometric L2 projection solver with GALOIS system for 3D tumor growth simulations, Computer Methods in Applied Mechanics and Engineering, Volume 343, 2019, Pages 1-22
  29. M. Kurdziel, K. Boryczko "Neighbor-rank densities for non-metric data", Pattern Recognition Letters, vol. 128, 2019, pp. 306–310
  30. M. Kurdziel, P. I. Wójcik "Training neural networks on high-dimensional data using random projection", Pattern Analysis and Applications, vol. 22 iss. 3, 2019, pp. 1221–1231